
CSEE&T 2016 Panel IV

Delivering Software Engineering

Content to Computer Science Majors

Donald J. Bagert, Mike Barker, Dick Fairley, David Kung

Conference on Software Engineering and Training

Dallas, Texas, USA

April 6, 2016, 1:30-3:00 pm

Delivering Software Engineering

Content to Computer Science Majors

Donald J. Bagert

Benedictine College
dbagert@benedictine.edu

Conference on Software Engineering and Training

Dallas, Texas, USA

April 6, 2016

Introduction

• The Panelists

• Audience: What‟s Your Background?

• Purpose of This Panel

• Panel Format

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 3

Purpose of This Panel - 1

• Software Engineering undergraduate

degree programs have emerged

• However, most software is developed by

people with CS and other backgrounds

• There is limited space available for SE

content in CS curricula

– So it must be used effectively

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 4

Purpose of This Panel - 2

• This has been an ongoing challenge for

decades

• Little consensus on format has occurred

• Topic of CSEE&T 2015 Keynote

– This panel is a follow-up to it

• Want to provide you with “real takeaways”

you can adopt relatively easily

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 5

Panel Format

• Panelist Position Statements

• Any Follow-Up Comments from Panel?

• Questions from the Audience

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 6

Thank You!!!!!!!!!!!!!

Delivering Software Engineering

Content to Computer Science Majors

David Kung

Department of Computer Science and Engineering

The University of Texas at Arlington
kung@uta.edu

Conference on Software Engineering Education and Training

Dallas, Texas, April 5-6, 2016

Topics for Discussion

• How I View Process and Methodology

• How I View Agile Development

• How I Would Teach That SE Course(s)

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 9

Process and Methodology

• We‟ve focused on processes, and spent

tons of $$$.

• We‟ve confused process with

methodology, and vice versa.

• We‟ve been teaching processes but

rarely any methodology.

• Process alone will not make students

produce quality software.
Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 10

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 11

Process and Methodology
Process

• Defines a framework of

phased activities

• Specifies phases of WHAT

• Does not dictate

representations of artifacts

• It is paradigm-independent

• A phase can be realized by

different methodologies.

Examples

Waterfall, spiral, prototyping,

unified, and agile processes

Methodology

• Defines steps to carry out

phases of a process

• Describes steps of HOW

• Defines representations of

artifacts (e.g., UML)

• It is paradigm-dependent

• Steps describe procedures,

techniques & guidelines

Examples

Structured analysis/structured

 design (SA/SD), Object

Modeling Technique (OMT)

Process and Methodology

• “A Rational Design Process: How and

Why to Fake It,” David Parnas and Paul

Clements, IEEE TSE, 1986.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 12

Methodology: 4 Categories

• Normative: sequence of steps known to

work for the discipline

• Rational (nothing to do w/the acquired

company): based on methods and

techniques

• Participative: stakeholder based,

customer involvement

• Heuristic: based on lessons learned

 Maier and Rechtin, 2000

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 13

Process and Methodology

“methodologies move from heuristic to

normative and become ... standard solutions

... search algorithms have reached that

point.”

“Most of software development is still in the

stage where heuristic methodologies are

appropriate.”

 --- Alistair Cockburn,

“Agile Software Development,” 2nd Ed. 2007.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 14

How I View Agile Development
• Companies are rapidly moving to agile,

and hire graduates who know agile.

• Students want to learn and practice

agile development.

• Agile development needs an agile

development methodology.

• An agile development methodology

helps students learn modeling, analysis,

and design skills, and build up their

confidence in the job market..

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 15

Agile Methodology Is Needed

“Without the structure of „heavyweight‟

processes, XP actually requires more

self-discipline to use; self-discipline that

inexperienced students don't have.

Students use XP as an excuse to adopt a

sloppy, poor quality development style.”

John Dalby, “An XP failure in under-

graduate SE”
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 16

Agile Methodology Is Needed

Most software is written w/o requirements/

diagrams and agile methodology such as

Scrum that many companies follow

loosely only makes things worse. Most

students do not receive a formal

education in analysis and design and we

see the result in the current state of

software.

 --- An anonymous reviewer

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 17

Teaching The SE Course

• Select a team project that is big enough

to show challenges and small enough to

fit into one or two semesters.

• Choose waterfall or agile as you feel

comfortable with; agile uses N

iterations, set N=1 for waterfall.

• Teach selected SE topics along with the

development of the team project.

• Tool support to the methodology:

manual, semi-automatic, and automatic
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 18

Teaching SE Course: Example

• Select a team project: personal

calendar, room reservation, academic

advising, or car rental ...

• Choose agile: set N=3, may cut to 2.

• Teach a waterfall, and/or an agile

process (differ in sequential/iterative,

agile manifesto, and agile principles)

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 19

Accommodating
Requirements Change

Software
architecture

An Agile Process

Deriving Use Cases
from Requirements

Allocating Use Cases &
Subsystems
to Iterations

Requirements Elicitation

Business goals
& needs

Current situation

Preliminary requirements

Abstract & high level use cases,
use case diagrams

Use case-iteration
allocation matrix

(a) Planning Phase

control flow data flow control flow & data flow

(b) Iterative Phase – activities during each iteration

Actor-System Interaction
Modeling

Domain Modeling

Behavior Modeling &
Responsibility Assignment

Deriving Design Class
Diagram

Test Driven Development,
Integration, & Deployment

Customer
feedback

Iteration use cases

Domain model

Expanded use cases &
UI design

Behavior models

Design class diagram

Domain model

Use case-iteration
allocation matrix

Producing an Architecture
Design

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 20

Teaching The SE Course
• Week 1:

1. present project, require all team members to

take notes

2. in addition to above, require students to survey

existing products, and make a feature list

• Teach requirements acquisition and

specification

• Assignment: produce a prioritized list of

requirements for the project, due in one

week.

• Good enough is enough!

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 21

Teaching The SE Course

• Week 2: Deriving use cases from

requirements.

• Teach “what is a use case,” and related

concepts, how to derive use cases from

requirements, use case diagram

• Select one of the best requirements

specs and use it as the SRS; modify if

needed.

• Assignment: Deriving use cases from

SRS, due in one week.
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 22

Teaching The SE Course

• If needed and time permits, teach effort

estimation for use cases

• Teach or ask students to study the

poker game agile estimation method

• Don‟t worry about the estimates are

correct or not, the purpose is learning a

useful method/technique

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 23

Teaching The SE Course

• Week 3: Domain Modeling

• Teach WWWH, and UML class diagram

• Assignment: Construct a domain model

for the application of the project, due in

one week.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 24

Teaching The SE Course

• Week 4: Actor-System Interaction

Modeling (ASIM)

• Teach WWWH

• Select 1, 2, or 3 use cases to develop in

iteration 1; it is not the more the better;

quality is king. Note use case priorities

and dependencies.

• Assignment: Conduct ASIM for selected

use cases, due in one week. UI

prototypes may be produced.
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 25

Teaching The SE Course

• Week 5: Iteration 1 team presentations.

• All students must attend; 10% deduction

if absent w/o prior permission.

• Students sign in with TA at room

entrance; x points deduction for late

arrival.

• Students are encouraged to make

remarks and ask questions while other

teams present. Instructor may stimulate

students to do these.
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 26

Teaching The SE Course

• Weeks 6-7: Object Interaction Modeling.

• Teach WWWH, scenario, sequence

diagram

• Teach responsibility assignment

patterns (controller, expert, creator)

• Assignment: produce sequence

diagrams from the ASIMs for the

selected use cases, apply patterns, due

in one week.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 27

Teaching The SE Course

• Week 8: Deriving Design Class Diagram

• Teach WWWH

• Assignment: derive DCD from the

sequence diagrams.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 28

Teaching The SE Course

• Week 9: Implementation and Testing

• Teach implementation consideration,

code review, test techniques, Junit, test

driven development, etc.

• Assignment: Implement the selected

use cases, test some of the classes,

due depends on the difficulty and

student preparation.

• Implementation and testing are optional

but recommended.
Conference on Software Engineering and Training – Dallas TX - 6 April 2016 29

Teaching The SE Course

• Week 10: Iteration 2 team presentations

• Same as iteration 1 but this time student

teams may be required to demo the use

cases implemented (demo as much as

they have been able to implement)

• Software demo may take place at a

later time (say one or two weeks later).

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 30

Teaching The SE Course

• Week 11-15: Repeat for iteration 3 with

new use cases

• Teach SQA, SCM, project

management, and/or other topics.

• If waterfall process is used, then weeks

1-8 perform analysis and design, weeks

9-15 perform implementation, testing

and demo.

Conference on Software Engineering and Training – Dallas TX - 6 April 2016 31

Delivering Software Engineering

Content to Computer Science Majors

Dick Fairley

Software and Systems Engineering Associates (S2EA)

d.fairley@computer.org

Conference on Software Engineering Education and Training

Dallas, Texas, April 5-6, 2016

Good news and bad news

• Good news:

– We can expect (hope) that students in an upper

division SwE course will be familiar with

algorithms, data structures, and programming-

in-the-small

• Bad news:

– We will probably have only two SwE courses

• A pedagogical and a project course

• Or two project courses
CSEE&T 2016 Panel 33

The challenge

• How do we teach large-scale issues in a small-

scale setting?

• To students who may not be motivated

– Because they don’t have the experience or context to

understand the issues and why they are important

CSEE&T 2016 Panel 34

Topics

• Skills-based education & training

• Industrial experience for faculty members

• Some backup slides

– Teaching interdisciplinary projects

CSEE&T 2016 Panel 35

Competency and skills
• A competent individual has the knowledge, skills, and

ability to perform assigned tasks efficiently and

effectively, at a given level of competency

– Knowledge is what one knows

– Skill is what one can demonstrably do

– Ability includes the cognitive and interpersonal attributes

that enable an individual to perform assigned tasks

efficiently and effectively

CSEE&T 2016 Panel 36

Knowledge and ability are prerequisites of skill

SWECOM Competency Levels
• SWECOM includes five competency levels for software

engineering technical activities:

1. technician

2. entry level practitioner

3. practitioner

4. technical leader

5. senior software engineer

• Some activities do not include competencies at all five

competency levels

– e.g., no technician level skills for selecting a team

software process

CSEE&T 2016 Panel 37

For more information

• For more information see the

 Software Engineering Competency Model

(SWECOM)

https://www.computer.org/web/peb/swecom.

• And the Software Assurance Competency Model

http://www.sei.cmu.edu/reports/13tn004.pdf.

CSEE&T 2016 Panel 38

How to impart skills?
• Each course has a term project

• With weekly project deliverables that

cumulatively result in a final report

– Weekly deliverables build on previous ones and can

be revised based on instructor feedback

– Earlier assignments may also have to be revised

• Welcome to the real world

• Project assignments, for each class, require

application of specific skills to solve a problem

– Classroom exercises introduce the skills

CSEE&T 2016 Panel 39

How to assess individual skills?
• Presentations

• Observations

• Demonstrations

• Weekly project deliverables

• Weekly status reports

• Preparation of individual portfolios of work

CSEE&T 2016 Panel 40

Weekly individual status reports

• Weekly individual status reports

– What did you plan to accomplish last week?

– What did you accomplish?

– What new skills did you learn and use last week?

– What other skills did you apply?

– What do you need help with?

CSEE&T 2016 Panel 41

What about team projects?
• Often, team projects do not build skills for the

project members

– Joe will do the coding

• which he knows how to do – kind of

– Sue will do the testing

• which she knows how to do – kind of

– John will do the documentation

• which he knows how to do – kind of

– The delivered product works – kind of

• Result: no one acquires any new individual or

team skills
CSEE&T 2016 Panel 42

An approach to building software

engineering team skills
• Team jointly interviews the project customer and develops

the requirements in consultation with the customer

– And jointly develop and review use cases

– Using text, state diagrams, and sequence diagrams to
document scenarios

• Team adopts an architectural pattern and a design
metaphor to guide design decisions

• Team uses an agile development process with all team
members participating

• Guidelines

– Teams do project work during weekly class time

– With periodic customer involvement

– And instructor coaching

CSEE&T 2016 Panel 43

How to assess team skills
• Observation of team at work

• Weekly demonstrations of team progress

• Weekly individual progress reports

• Weekly progress and planning meetings

– Using burndown and velocity charts

– With instructor coaching

• Monthly confidential peer reviews

• Monthly meetings with individual team

members

CSEE&T 2016 Panel 44

How to assess individual skills within

teams?

Weekly individual reports

• Individual skills

– What did you plan to accomplish last week?

– What did you accomplish?

– What new skills did you learn and use last week?

– What other skills did you apply?

– What do you need help with?

• Team skills

– How did your work contribute to the team effort and
to project success?

– What needs to happen for you and your team to be
more successful?

CSEE&T 2016 Panel 45

How can faculty members gain

needed practical experience?
• Summer internships

• Consulting with local industry

• Visiting resident industry faculty member

– To team teach SwE courses and projects

– To give seminars on industry practices

– To conduct research for his or her organization

• Industrial advisor for student team projects

– To advise students

– (and faculty members)

 CSEE&T 2016 Panel 46

Backup slides

CSEE&T 2016 Panel 47

Teaching interdisciplinary projects

CSEE&T 2016 Panel 48

A couple of quotes from SEBoK*

• “Systems engineering and software engineering

are not merely related disciplines; they are

intimately intertwined.”

• “The SEBoK explicitly recognizes and embraces

the intertwining between systems engineering and

software engineering as well as defining the

relationship between the SEBoK and the Guide to

the Software Engineering Body of Knowledge

(SWEBOK) (Bourque and Fairley 2014).”

CSEE&T 2016 Panel 49

* A Guide to the Systems Engineering Body of Knowledge (SEBoK)

www.sebokwiki.org

Another quote

• “The link between systems engineering and

software engineering is broken and needs to

be fixed.”

David Long

INCOSE president, 2015

CSEE&T 2016 Panel 50

Interdisciplinary projects
• Some schools teach interdisciplinary senior

design courses that include computer science

and software engineering students

• Many people recognize that software is an

essential element of most modern systems

– Software provides most of the functionality,

behavior, and quality attributes in modern systems

– Plus the interfaces among system components and

to the external environment

CSEE&T 2016 Panel 51

Some kind-of good news

• Good news: the importance of software in

interdisciplinary systems is often recognized

– It is generally understand that software is necessary

– but not what it is or what to do about it

CSEE&T 2016 Panel 52

A paraphrase

Charles Dudley Warner almost said:

“Everyone talks about software but

no one knows what to do about it”

CSEE&T 2016 Panel 53

Now for the bad news

• Bad news #1: faculty (including CS, SwE, and

others) don’t know what to do about it

• Bad news #2: the thoughts and opinions of CS

and SwE students are often ignored in

multidisciplinary team meetings

– Welcome to the real world

• Bad news #3: software development is usually

relegated to lower levels in a system hierarchy

– And partitioned among the system components

– And you software guys figure out how to make it all

work together

CSEE&T 2016 Panel 54

Traditional engineering and

software engineering

• Development of physical systems is based on

variants of the waterfall model

– Because of the nature of physical entities

• Software engineering has much more flexibility in

development processes

– Because of the nature of software

• An issue: how to seamlessly integrate traditional

engineering and software engineering processes?

CSEE&T 2016 Panel 55

An approach for interdisciplinary project

courses (and for real-world projects)

• CS/SwE students lead the preliminary analysis
phase

– And involve other engineers in developing use cases

– And participate in developing the system architecture

– And participate in making design tradeoff decisions

• Model-based system development is done using
real and simulated hardware and software

– Using an incremental development process based on

partitioned system-level capability sets

– Capability sets are partitioned using one or more

prioritization criteria

 CSEE&T 2016 Panel 56

Validate CS1

Validate

CS1+2

Validate

CS1,2&3+4

Validate

CS1&2+3

Verify CS1
Build

CS1

Verify

CS1+2

Verify

CS1&2+3

Verify

CS1,2&3+4

Build

CS1+2

Build

CS1&2+3

Build

CS1,2&3+4

time

Analysis

Design

Deliver

Plan CS1

Plan

CS1+2

Plan

CS1&2+3

Plan
CS1,2&3+4

CS: Capability Set

An incremental system development process

CSEE&T 2016 Panel 57

Note

• This approach is consistent with Barry Boehm’s

Incremental Commitment Model

• A good ICM introductory paper is:

Using the Incremental Commitment Model to Integrate

System Acquisition, Systems Engineering, and Software

Engineering

http://csse.usc.edu/TECHRPTS/2007/usc-csse-2007-715/usc-csse-2007-

715.pdf.

CSEE&T 2016 Panel 58

Incremental System Partitioning Criteria

• Develop an architectural skeleton of simulated components

with interfaces and communication protocols among them;

then incrementally build and demonstrate real components

based on capability sets prioritized by functionality, behavior,

and quality attributes.

• Allocate requirements to one or more initial capability sets that

include the most difficult, highest risk elements of a system;

then incrementally add other system elements based on

capability sets prioritized by functionality, behavior, and

quality attributes.

CSEE&T 2016 Panel 59

Incremental Partitioning

Criteria - 2

• Allocate requirements to one or more initial capability sets

that include the easiest, lowest risk elements of a system to

learn about and demonstrate the feasibility of incremental

system development; then incrementally add other system

elements based on capability sets prioritized by

functionality, behavior, and quality attributes.

• Allocate requirements to capability sets that initially

evaluate the acceptability of acquired components and

those to be used and reused; then incrementally add other

system elements based on capability sets prioritized by

functionality, behavior, and quality attributes.

CSEE&T 2016 Panel 60

Incremental Partitioning

Criteria - 3
• Allocate the system requirements to capability sets that

incrementally result in a succession of virtual machines.

• Allocate the system requirements to capability sets of growing

system capabilities to be periodic delivered into the

operational environment in a preplanned manner.

CSEE&T 2016 Panel 61

Tracking Progress Using a

Velocity Chart

Iteration #

N
u

m
b

er
 o

f
C

o
m

p
le

te
d

 T
a

sk
s

p
er

 I
te

ra
ti

o
n

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Series2

CSEE&T 2016 Panel 62

A Burndown Chart for an Iteration Cycle

Iteration Cycle in Work-Days

9 6 3 12 15

N
u

m
b
er

 o
f

R
em

ai
n

in
g

 T
as

k
s

0

5

10

15

20

25

30

Planned tasks remaining

Actual tasks remaining

CSEE&T 2016 Panel 63

What does everyone know about

Software Engineering?

Mike Barker

Nara Institute of Science and Technology, Japan

mbarker@is.naist.jp

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 64

mailto:mbarker@is.naist.jp

• Or a two-year, four-person project?

How hard can it be?

It's simple!

Just some coding…

• A man-month of coding?

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 65

A spreadsheet doesn't need

software engineering!

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 66

• Error checking?

• Regression tests?

• Reviews?

How much money can we lose?

Remember, computer programs let you find

the wrong answer at high speed!

Who isn't going to need

software engineering skills?

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 67

Computer literacy?

• What about software engineering literacy?

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 68

• Professional Practice

• Requirements analysis

and specification

• Software design

• Software V&V

• Software process

• Software quality

• Security

A reflection journal?

• What happened?

• How did you feel about it?

• What do you wish had happened?

• What do you intend to do next time?

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 69

References

• The Future of Jobs: Employment, Skills and

Workforce Strategy for the Fourth Industrial

Revolution, World Economic Forum, Jan.

2016

http://www3.weforum.org/docs/WEF_FOJ_

Executive_Summary_Jobs.pdf

• Software Engineering 2014, ACM

http://www.acm.org/education/se2014.pdf

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 70

Wait! What do Dr. Google and

Mr. Wikipedia say?

• Software engineering is a field of engineering, for designing and

writing programs for computers or other electronic devices. A software

engineer, or programmer, writes software (or changes existing

software) and compiles software using methods that make it better

quality. Better quality software is easier to use, and the code is easier

to understand, to maintain, and to add new features. Becoming a

software engineer requires university level classes and practice writing

code. Software engineering can be very difficult work.[1] Software

engineering is often done as part of a team.

• https://simple.wikipedia.org/wiki/Software_engineering

Conference on Software Engineering and Training – Dallas, TX – April 6, 2016 71

